
 33

UCL – UNIVERSAL COMMUNICATION LANGUAGE

Carlos A. Estombelo Montesco
Dilvan de Abreu Moreira

Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação
Av. do Trabalhador São-Carlense, 400 - Centro - Cx. Postal 668 São Carlos - SP - Brazil CEP 13560-970

{cestombe, dilvan}@icmc.sc.usp.br

Abstract

For successful cooperation to occur between agents they have to be able to communicate among themselves. To enable this
communication an Agent Communication Language (ACL) is required. Messages coded in an ACL should adequately express their
meaning from a semantic point of view. The Universal Communication Language (UCL) can fulfill the role of an ACL and, at the same
time, be convertible to and from a natural language. UCL design is concerned with the description of message structures, their underlining
semantic context and the support for protocols for agent interaction. The key point about UCL is that the language can be used not only for
communication among software agents but among humans too. This is possible because UCL is derived from the Universal Network
Language (UNL), a language created to allow communication among people using different languages. UCL was defined using the
Extended Markup Language (XML) to make it easier to integrate into the Internet. In addition, an enconverter-deconverter software
prototype was written to serve as a tool for testing and experimenting with the language specifications.

INTRODUCTION
The technology of software agents can be an interesting
tool for the creation of new models for complex software
systems. In the project of software agents, many of the
traditional techniques of artificial intelligence can be mixed
with techniques from the field of distributed computer
systems, theories about negotiation and theories about
working teams (Dignum, 2000). Software agents are
basically designed to cooperate (either with others or with
humans) in a seemingly intelligent way. But for
cooperation to occur a communication language is
necessary.

What does it mean to be able to communicate with
someone? Simplifying it, useful communication requires
shared knowledge. While this includes knowledge of
language, words and syntactic structures, meaningful
communication is even more focused on knowledge about a
problem to be solved. To interact with a florist you need
some knowledge of flowers.

The widespread use of the Word Wide Web (WWW) and
the growing Internet facilities has sparked enormous
interest in improving the way people communicate using
computers. To date, commu nication among software agents
and humans has been done under limited conditions:
communication is reduced to basic information exchange,
ignoring the richness and flexibility implied by human
language.

However to deal with any human language would be very
difficult. To solve this problem, communication systems
can use an Agent Communication Language (ACL) based
in a simplified form of human language, which could be
converted from and to a natural language.

OBJECTIVES
The main objective of this work is the specification of a
new ACL, called UCL - Universal Communication
Language, that focus on the specification of the semantic
model and structure of the messages it represents. It also
adds support for message transmission over the Internet and
can be translated into or generated from natural language
(English or other languages).

UCL is derived from the Universal Network Language
(UNL) (Ushida et al., 1999) and implemented using the
language XML (Extensible Markup Language) (Connolly,
2000). XML is a W3C (World Wide Web Consortium)
standard language, like HTML, this means an easy
integration with the Internet.

Another goal of this paper is to show a working UCL
enconverter-deconverter prototype using the tool Thought
Treasure and its associated ontology.

COMMUNICATION AMONG AGENTS
In the communication process among agents, it is
indispensable an appropriate understanding of what will be
communicated through the exchange of messages. A good
representation of the knowledge domain, shared by the
agents, can collaborate for a better understanding of the
context where a message exchange takes place. As a
consequence, it is important to explore concept
classifications and their hierarchical structures for
knowledge domain representation. The concepts in the
knowledge domain have to be shared by the agents
exchanging messages and be reusable in more than one
context.

The specification of an ACL has to deal with the
description of the message structure, his semantic model
and the interaction protocols (Mamadou, 2000):

 34

• The message format defines the communicative acts
primitives and the parameters of the message (as
sender, receiver, etc.). The message content describes
facts, actions, or objects in a content language (KIF,
Prolog, etc).

• The semantic model of an ACL should allow for
messages with a concise meaning and no ambiguity.

• The interaction protocols are projected to facilitate the
communication among agents. Protocols are optional,
but, in case they are used, the communication among
agents should be consistent with the chosen protocol.

ONTOLOGIES FOR COMMUNICATION

'Ontology' is a term used to refer to the common sense of
some domain of interest. The ontology can be used as a
uniform framework to solve communication problems.

An ontology necessarily links or includes some type of
"general vision" regarding a certain domain. This "general
vision" is frequently conceived as a group of concepts (for
example: entities, attributes, processes), their definitions
and their interrelations. That is called a conceptualization.

A conceptualization can be concretely implemented, for
example, in a software component, or it can be abstract,
being the implied concepts of a person. The use adopted in
this work is that ontology is an explicit idea, or a
representation (of some part) of a conceptualization.

An explicit ontology can take a variety of forms, but
necessarily they will include a vocabulary of terms and
some specification of their meanings (for example:
definitions).

The level of formality for a vocabulary varies considerably.
This variation can be shown in the following four points of
view:

• Highly informal: expressed freely in natural language.
• Semi-informal: expressed in a restricted form and

structure in natural language. Larger clarity for
ambiguity reduction.

• Semi-formal: expressed in an artificial language
defined formally.

• Strictly formal: defined meticulously with formal
semantics, theorems and proofs.

A shared ontology is necessary for communication between
two agents. Unfortunately UNL does not have a public
available ontology. For this reason, the ontology embedded
in the tool Thought Treasure was used to implement the
enconverter-deconverter prototype.

THE TOOL THOUGHT TREASURE (TT)

This is a powerful tool for processing natural language,
developed by Erik T. Mueller (1998). It is capable of
interpreting natural language, as well as extending its
ontology-based knowledge base. TT has a compiler for

natural language that allows it to extract information of
sentences.

TT has a database with 25,000 concepts organized in a
hierarchical way. For example, Evian is a flat-water type,
which is a drinking-water type, which is a food type and so
on.

Each concept has one or more word translations what forms
a total of 55,000 words and sentences of the English and
French language. For instance, as it is observed in the
Figure 1, the association with the concept food in the
English language are the words food and foodstuffs and in
French aliment and nourriture (among others).

In addition, ThoughtTreasure has approximately 50,000
assertions related to concepts such as: a green-pea is a
seed-vegetable, a green-pea is green, the grean-pea is part
of pod-of-peas, and pod-of-peas is found usually at a store
of foodstuffs.

Figure 1: Association of the ontology with a natural
language

UCL - UNIVERSAL COMMUNICATION
LANGUAGE

The language UCL represents information in the same way
UNL does, but using syntax based in XML. XML is a
meta-language, a simplified form of SGML, which
developers can use to create new languages based in tag
elements. The new tags, created to represent the new
language elements, can be described in a special file called
DTD (Document Type Definition). UNL is a formal
language for representing the meaning of natural language
sentences and exchange information over a network.
Information that is written in a native natural language is
"enconverted" into UNL and stored in a server. This
information can be "deconverted" into other languages to
be read by each native reader. Thus, UNL can play the role
of an interface between different human languages to
exchange information.

UNL represents information expressed in sentences as a set
of relations between meanings, expressed by words, and a

Concept Natural Language

 35

syntactic structure that makes up the sentence. The
vocabulary of UNL consist of:

• Universal Words (UWs), to represent word meaning.
• Relation Labels, to represent relationships between

UWs
• Attribute Labels, to express further definitions or

additional information for the UWs that appear in a
sentence.

In UNL, the information about a sentence includes its
meaning, tense and aspect information (how the speaker
grasp the event), intention of utterance, speaker's feeling or
judgment upon contents, and sentence structure. In the
language, the meaning of a sentence is represented by the
description of the relationships between UWs and its
structure is described by attaching attribute labels to these
UWs.

UCL GOALS
The language UCL is to be used for high-level
communication among agents through the exchange of
messages. Some characteristics that guided the definition of
the language were:

• To aid the communication involving agents giving
importance to the semantics of the message;

• To be easy to use;
• To facilitate its integration into the Internet

environment writing it in XML (Extensible Markup
Language)

The language UCL represents the information in sentences
(that can form messages) that involves a syntactic structure
with a group of concepts, relationships and attributes
similar to UNL:

• Universal Words (UW),
• Relationship labels,
• Attribute labels .

To define a language based in XML a specific DTD file is
used. This DTD is essentially a grammar of free context,
like the extended BNF form (Backus Naur Form) used to
describe computer languages (Grosof & Labrou, 1999).

As in UNL, a Universal Word (UW) is the minimum unit
that represents a concept, which denotes a specific meaning
in a message. When a concept needs to be defined in more
detail Relationship Labels and Attribute Labels are used. In
addition, UCL uses a shared ontology, from the tool
ThoughtTreasure, to add meaning to the UWs. All agents
participating in a communication process should share this
ontology.

In a UCL sentence, each defined UW has an identifier label
(id) that is used to identify a particular concept inside a
sentence. A sequence of alphanumeric characters forms this
labels. The label head corresponds to the place where the
name of the concept will be defined. The concepts used are
always related to the ontology being used
(ThoughtTreasure ontology). It is at this point that a

sentence in UCL is connected with the ontology for a
specify knowledge domain.

In UCL messages possess a certain meaning involving
concepts. This composition of concepts is represented by
groups of binary relationships, which allow different
relationships involving the concepts. The relationship labels
used come from UNL. Figure 2 shows an English sentence
and its translation to UCL.

• UNL is a common language that would be used for
network communications.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sentence SYSTEM "Sentence.dtd">
<sentence>
 <uw id="uw00" head=“language”>
 <icl direction=”to”>
 <uw head=”abstract thing”/>
 </icl>
 <tense attribute="present"/>
 <focus attribute="entry"/>
 </uw>
 <uw id="uw01" head=”UNL”>
 <icl direction=”to”>
 <uw head=”language”/>
 </icl>
 <focus attribute="topic"/>
 </uw>
 <uw id="uw02" head=”common”>
 <aoj direction=”to”>
 <uw head=”thing”/>
 </aoj>
 </uw>
 <uw id="uw03" head=”use”>
 <icl direction=”to”>
 <uw head=”do”/>
 </icl>
 <tense attribute="present"/>
 </uw>
 <uw id="uw04" head=”language”>
 < icl direction=”to”>
 <uw head=”abstract thing”/>
 </icl>
 <tense attribute="present"/>
 <focus attribute="entry"/>
 </uw>
 <uw id="uw05" head=”communication”>
 < icl direction=”to”>
 <uw head=”action”>
 </icl>
 <convention attribute="pl"/>
 </uw>
 <uw id="uw06" head=”network”>
 <icl direction=”to”>
 <uw head=”thing”>
 </icl>
 </uw>
 <relation label="aoj" uw -id1="uw00" uw -id2=”uw01”/>
 <relation label="mod" uw -id1="uw00" uw -id2=”uw02”/>
 <relation label="obj" uw -id1="uw03" uw -id2=”uw04”/>
 <relation label="pur" uw -id1="uw03" uw -id2=”uw05”/>
 <relation label="mod" uw -id1="uw05" uw -id2=”uw06”/>
</sentence>

Figure 2 Definition a sentence in UCL

IMPLEMENTING AN ENCONVERTER-
DECONVERTER

UCL is defined in the meta-language XML, to work with it
a XML parser should be used. As the enconverter-

 36

deconverter is written in the language Java, the Java API
for XML Processing (JAXP) Version 1.1 from Sun, was
used (other Java XML parsers could have been used).

As said before, UCL uses the ontology available on the
ThoughtTreasure (TT) tool (written in C). This tool
includes program libraries to manipulate concepts of the
ontology, to do consultations on the net of concepts, and to
analyze their hierarchy. An instance of TT can run as a
server in a network and communicate with a Java program
running in another process. A Java communication API is
supplied with TT to handle the low level details of this
communication.

The enconverter-deconverter prototype uses the Java
communication API to contact a running instance of TT
and use its functionality. Those include natural language
treatment, ontology queries, etc. A high level Java interface
was written to communicate with the TT server (through
the API) and implement the high level functions needed by
the prototype. This interface is called UclLanguage.

Figure 3 presents a diagram with the sequence of events
that happens when the prototype makes use of the interface
UclLanguage to generate UCL messages.

Figure 3: Diagram with the sequence of events during
enconvertion.

The process begins when a user enters a natural language
sentence into the prototype. The prototype calls the method
understood of the interface UclLanguage. The natural
language sentence is interpreted (using TT) and some
possible semantic interpretations are returned. The user
chooses the most appropriate interpretation. The chosen
interpretation is converted to TT’s format (method

takeAttofConcept) and then to UCL format (method
convertTTtoUCLwrite). The UCL format can be shown on
the screen or saved in a file.

The reverse process, transform a UCL message in natural
language is easier. The prototype uses the method
deconvertUCLtoTT to convert the UCL message in a list of
TT concepts. Then it uses the method deconverterTTtoLN
to transform this list of concepts in a natural language
sentence, which represents the original UCL message.

Example : Monkey eats bananas

======= Input Natural Language ==========
Example: Monkey eats bananas.

============ Choose Option ==============
<0>An ape eats a banana.

Option: 0
============ Message UCL ===============
<?xml version="1.0" encoding="UTF-8"?>

<sentence>
 <uw id="uw2" head="present-indicative">
 <icl direction="to">
 <uw head="present-tense" />
 </icl>
 <focus attribute="entry" />
 </uw>
 <uw id="uw4" head="eat">
 <icl direction="to">
 <uw head="ingest" />
 </icl>
 </uw>
 <uw id="uw5" head="ape">
 <icl direction="to">
 <uw head="mammal" />
 </icl>
 </uw>
 <uw id="uw7" head="banane">
 <icl direction="to">
 <uw head="fruit-tropical" />
 </icl>
 </uw>
 <relation id="uw1" label="icl" id1="uw2" id2="uw6" />
 <relation id="uw6" label="icl" id1="uw3" id2="uw7" />
 <relation id="uw3" label="agt" id1="uw4" id2="uw5" />
</sentence>

======== Deconverter Message UCL ===========
=>Debug : [present-indicative [eat ape banane]]

English: An ape eats a banana.
French : Un singe croque la banane.

 37

Figure 4: Architecture of a system that uses the language
UCL

Figure 4 illustrates the use of UCL (using one TT server)
in the communication process between two software
agents.

CONCLUSIONS
The definition of the Universal Communication Language
(UCL) includes all theoretical concepts of the Universal
Networking Language (UNL). This was done to preserve
the representative power of this language. The Web
community currently regards XML as an important step
toward semantic integration. Developing the language
UCL using XML yielded some important benefits. The
most important is the reuse of existing tools for creating,
transforming, and parsing UCL documents.

The UCL enconverter-deconverter prototype shows the
need for a shared ontology for the implementation of a
successful enconverter-deconverter. UCL was developed
to be used as a rich Agent Communication Language
(ACL), which would make it easier for humans to
communicate with and program software agents (using
multiple natural languages). But UCL can be used in the
same role as UNL.

The prototype also points out the need for an open shared
ontology for UNL. UNL relation and attributes labels
have some ontological knowledge already embedded in
them. This makes impossible to map all possible UNL
(and consequently UCL) constructs into ThoughtTreasure
ontology based representation. The prototype can not be
expanded into a full featured UCL enconverter-
deconverter. For the time being this prototype is good
enough to help the development of a prototype UCL
interpreter for software agents.

The full power of the approaching of using UCL as an
ACL and programming tool for software agents will only
be realized, when an open shared ontology for UNL and

enconverters-deconverters for many natural languages
(using this shared ontology), are available. One will be
able to program a software agent using his own native
language and share this program with many other people,
which will see and interact with the program in their own
native languages.

Finally, UCL is still a proposal, but we hope that others in
the Web community will help to shape its final format.

ACKNOWLEDGEMENTS
The authors would like to thanks the CNPq – National
Council for Research in Brazil for the financial support
for this work.

REFERENCES
Connolly, D. (2000). Extensible Markup Language

(XML) .February 2000. Available on-line:
http://www.w3.org/XML/

Dignum, Frank; Greaves, Mark. (ed.) (2000). Issues in

agent communication. – (Lecture notes in computer
science; Vol 1916: Lecture notes in artificial
intelligence) Berlin; Heidelberg; New York;
Barcelona; Hong Kong; London; Milan; Paris;
Singapore; Tokyo: Springer, 2000.

Grosof, Benjamin N.; Labrou, Yannis (1999). An

Approach to using XML and a Rule-based Content
Language with an agent communication Language.
IBM Research Report. RC 21491 (96965), 28 May
1999, Available on-line:
http://www.research.ibm.com

Mamadou, T. K.; Shimazu, A.; Tatsuo, N. (2000). The

State of the Art in Agent Communication Languages.
Japan Advanced Institute of Science and
Technology., Japan, 1999.

Mueller, Erik T. (1998). Natural Language processing

with ThoughtTreasure. New York: Signiform. Also
available on-line:

 http://www.signiform.com/tt/book/

Ushida, H.; Zhu, M.; Senta, T.D. (1999). The UNL a Gift

for a Millennium. UNU/IAS, November 1999,
ISBN:4-906686-06-0.

 Also available on-line:
 http://www.unl.ias.unu.edu/publications/index.htm

